High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction

نویسندگان

  • Hongliang Peng
  • Zaiyong Mo
  • Shijun Liao
  • Huagen Liang
  • Lijun Yang
  • Fan Luo
  • Huiyu Song
  • Yiliang Zhong
  • Bingqing Zhang
چکیده

Proton exchangemembrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Feand Ndoped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m g. In 0.1 MHClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 mg Pt cm). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. Amembrane electrode assemblymade with the catalyst as a cathode is tested in aH2-air single cell, the maximum power density reached ,0.33 W cm at 0.47 V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Graphene-Enriched Co9S8-N-C Non-Precious Metal Catalyst for Oxygen Reduction in Alkaline Media

In this work, a non-precious metal catalyst consisting of Co9S8 nanoparticles surrounded with nitrogen-doped graphene-like carbon (Co9S8-N-C) was developed for oxygen reduction in alkaline media. Improved activity has been measured with the Co9S8-N-C catalyst relative to Pt/C and a non-precious metal catalyst based on Fe instead of Co (Fe-N-C). An extensive physical characterization, including ...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Facile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction

In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013